Publications && Patent

【2019】Can Android smart devices provide centimeter-level GNSS ambiguity-fixed solution? Yes!

Date:[2019-11-22] Clicks:[10229]

Abstract: High-precision navigation using low-cost handsets has profound potential for mass-market applications, which has been being boosted by the release of raw GNSS data from Google Android smart devices. However, integer ambiguity fixing for centimeter-level GNSS positioning is prevented by the unaligned chipset initial phase biases (IPBs) found within Android carrier-phase data. In this study, we thus investigate the temporal behaviors of those chipset IPBs using zero baselines where smart devices are linked to external survey-grade antennas, and find that the IPBs are generally stable over time as the mean standard deviation of single-epoch IPB estimates derived from continuous carrier-phase data is as low as 0.04 cycles for all satellites. Unfortunately, these chipset IPBs differ randomly among satellites and change unpredictably if carrier-phase signals are re-tracked, discouragingly suggesting that the chipset IPBs cannot be pre-calibrated or even calibrated on the fly. We therefore have to presumably correct for them in a post-processing manner with the goal of inspecting the potential of Android GNSS ambiguity resolution if hopefully the IPBs can be gone. For a vehicle-borne Nexus 9 tablet with respect to a survey-grade receiver located 100-2000 m away, we achieve the first ambiguity-fixed solution within 321 s and finally 51.6% of all epochs are resolved; the ambiguity-fixed epochs can achieve a positioning accuracy of 1.4, 2.2 and 3.6 cm for the east, north and up components, respectively, showing an improvement of 30%-80% compared to the ambiguity-float solutions. While all smart devices above are connected to external survey-grade antennas, we find that a Xiaomi 8 smartphone can be coupled effectively with a miniaturized portable patch antenna, and then achieve commensurate carrier-phase tracking and ambiguity-fixing performance to those of a commercial μ-blox receiver with its dedicated patch antenna. This is encouraging since a compact and inexpensive patch antenna paired with smart devices can promote the democratization of high-precision GNSS.

 


Copyright PRIDELAB IN GNSS CENTER , Wuhan University Visits:112122 Powered by Truesing